Memory Overview

Paging is practically not used.  64-bit mode requires paging, however, so it is 
identity-mapped -- virtual identical to physical.  All tasks on all cores use 
the same page table map, just as though all addresses are physical addresses.  
2Meg or 1Gig page table entries are used.  Nothing swaps to disk.

In TempleOS, the lowest 2Gig of memory is called the code heap.  TempleOS's 
compiler always uses 32-bit signed relative JMP & CALL insts because 64-bit 
CALLs take two insts.  With signed +/- 32-bit values, code can only call a 
function within 2Gig distance.  Therefore, TempleOS keeps all code in the lowest 
2Gig memory addresses including what would normally be called "the kernel".  Two 
Gig is plenty for code, don't worry.

You can create new, independent heaps using HeapCtrlInit().  Then, use the 
CHeapCtrl as the 2nd arg to MAlloc().  See HeapLog() for an example.

Memory alloced by a task will be freed when the task is killed.  The Adam Task 
is a task that never dies.  His memory is like kernel memory in other operating 
systems.  See ACAlloc(), AMAlloc(), AMAllocIdent() and AStrNew().

All of the regular page tables are marked, "cached".  When accessing hardware, 
however, you need uncached page table.  The lowest 4Gig addresses have an alias 
to access hardware located toward the top of mapped space, 0x10000000000.  See 
dev.uncached_alias.

During an extended powered-on session of TempleOS, in theory, memory will become 
fragmented, requiring a reboot.  It has never happens to me.

See MemRep() and ::/Demo/MemDemo.HC.


                           Single System-wide Mem Map

 0x0000007C00- 0x000003616F
  Kernel module, placed here by the boot-loader, BOOT_RAM_BASE.

 0x0000096600- 0x0000096FFF
  Boot block relocated here before loading the Kernel module, BootDVD & BootHD.

 0x0000097000- 0x0000097030 Multicore start-up vect code, MPN_VECT.
~0x000009F000- 0x000009FFFF Extended BIOS data area.
 0x00000A0000- 0x00000BFFFF VGA graphics mem with alias at text.vga_alias.
 0x0000100000- 0x0000101FFF CSysFixedArea for misc.
 0x000050A000- 0x001FFDFFFF Code Heap mem.

 0x00E0000000- 0x00FFFFFFFF
  32-bit devices could alloc memory at 0xF0000000 going up, but this is wrong, 
  since some PCs already have devices at 0xF0000000.  No PCI devices are 
  supported, so Mem32DevAlloc() flaws are not an issue.

 0x0080000000-~0x00DFFFFFFF
 0x0100000000-~0xFFFFFFFFFF
  Data Heap mem.  (The physical memory that exists in this range is data heap.)

 0x10000000000- 0x100FFFFFFFF
  Uncached alias of first 4Gig.  (For 32-bit device access.)

             - 0x100FFFFFFFF
  64-bit devices are alloced with Mem64DevAlloc() counting bwd, but no PCI 
  devices are actually supported.



* Note: There is a break in the data-heap block pool.  This has no effect except 
the obvious effect that fragmentation has on contiguous requests.  I can MAlloc(
) an 8Gig chunk on my 12Gig machine.  I can MAlloc() an 32Gig chunk on my 64Gig 
machine.  

* Note: For systems with less than 2Gig RAM, the code and data heap block pools 
are the same.  For systems with 2-4Gig of RAM, the code heap is 1/4 of the 
total.  See BlkPoolsInit().


                                    History

In 2003, I wanted to make a no-paging ring-0-only 64-bit operating system for 
super speed with simplicity and full access.  With paging, every memory request 
requires 5 accesses -- it must access the address itself, 4K, 2Meg, 1Gig, and 
512Gig page tables, but the CPU's translation look-aside buffer mostly removes 
the penalty for using paging.  So, I did not want to use paging, but long mode 
requires it.  I did the next best thing -- I identity-mapped everything and 
achieved the simplicity I was after with subtle performance boosts, not wasting 
time changing address maps.  And, I look forward to the day I command Intel to 
make an optimized no-paging long mode.

I needed VGA A0000-BFFFF memory to be write-through and 0xE0000000-0xFFFFFFFF to 
be uncached for various devices.  All 64-bit computers allow stopping address 
translation at 2Meg page size, not using 4K.  I wanted to use 2Meg for 
everything because it's faster, with one less level of page tables.  I had to 
make A0000-BFFFF write-through, though, so I could not use 2Meg size on the 
lowest page.  I did the lowest 2Meg area as 4K pages.  I also unmapped the first 
4K to cause a fault when dereferencing NULL.

In 2016, I came-up with an alternate idea.  I double mapped the lowest memory 
with an alias that was uncached.  Accessing the lowest 2Meg area directly was 
cached but the alias I created up at the top of address space was uncached.  See 
UncachedAliasAlloc().  Unfortunately, I could no longer boast of the simplicity 
of identity mapping everything.  Since many of my users are familiar with 
A0000-BFFFF, it is actually pretty seriously unfortunate that they cannot use 
the easy-to-understand numbers of A0000-BFFFF, but must access the relocated 
alias location.  See text.vga_alias.  I also no longer cause a fault when 
dereferencing NULL.

Then, I switched to 1Gig page sizes.  For the lowest 4Gig, I set-up an alias up 
at the top of address space.  See UncachedAliasAlloc().  Not all computers 
support 1Gig page tables, however, so I also support 2Meg.

My original plan was to allow changing the page tables as needed, so I had code 
for taking control of 2Meg pages and marking them uncached or whatever.  When I 
did a HDAudio driver, I requested some 32-bit address space as uncached.  Today, 
all of the first 4Gig can be accessed without caching at the dev.uncached_alias.